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1. Introduction 
 

Demand for high-performance AI compute has doubled in size rapidly and is accelerating with the multiple 

domains, growing number of applications and services  (e.g. image and gesture recognition in videos, speech 

recognition, natural language processing, recommendation systems and more), such problems which several 

years ago were considered difficult for machines to solve, are now solved as accurately as by human beings and 

more, using deep learning models. As such, deep learning is a transformational technology. 

A typical deep learning algorithm comprises of multiple operators, such as matrix multiplication, convolutions, 

and other tensor operators, which add up to billions of compute-intensive operations. The execution of this 

massive amount of operations can be accelerated by using the inherent parallel processing that advanced GPUs 

offer. However, GPUs, which are primarily designed to render graphics in a super-fast way, are not optimized 

for deep learning workloads. The existing solution’s inefficiency for deep learning workloads has a severe impact 

on the operational costs of cloud providers and data centers. To address this issue, a new class of software 

programmable AI processors are emerging, designed from the bottom-up for DNN workloads. 

Habana’s Goya is an AI accelerator card dedicated for inference workloads. The Goya processor is an 

AI inference processor, designed specifically to deliver superior performance with low latency, power 

efficiency and cost savings for cloud, data centers and other emerging applications. 

 
2019 Habana Labs Ltd. | www.habana.ai | Aug 2019 3 

2. Deep Learning Workflows – Training and Inference 
 

A deep learning workflow consists of two conceptual steps: 
 
• Training - adjusts neural network model parameters to perform well on given data 
• Inference - executes a trained neural network model on new data to obtain the output 
 

For a model to address a specific use case, one first needs to train the model. Once the model is trained, it can 

be used (for inference). Both training and inference have similar characteristics, but different hardware resource 

requirements. 

 

During training, a large dataset is processed to train a neural network model so that the model will distinguish 

between different statistical properties of the samples within the dataset. After the model is ready for use, i.e., 

the model meets the accuracy goals, the model is ready for deployment. In a production environment, the model 

is used to efficiently process a new set of inputs to which it was not exposed during training. This operation is 

called inference and the goal of this phase is to infer attributes in the new data using the trained model.  

Although Habana’s training and Inference processors uses the same building blocks, there are some 

fundamental differences which required different architecture solutions -  Training workloads require high-

bandwidth memories with large capacity, in addition to the memory requirements for chip-to-chip communication. 

These requirements greatly increase solution BOM and its power consumption. 

Inference is critical to support real-time applications such as natural language processing, recommendation 

systems, speech recognition and many others. Therefore, inference is required to complete with low latency. In 

addition, providing high throughput with low batch sizes is also critical for inference of many applications. To 

provide comprehensive inference capabilities, an inference solution should provide high throughput, low latency, 

low power and be cost effective.  
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3. GOYA Processor High-level Architecture 
 

The Goya Inference Processor is based on the scalable architecture of Habana’s Tensor-Processing Core (TPC) 

and includes a cluster of eight programmable cores. TPC is Habana’s proprietary core designed to support deep 

learning workloads. It is a VLIW SIMD vector processor with Instruction-Set-Architecture and hardware tailored 

to serve deep learning workloads efficiently.  

The TPC is C/C++ programmable, providing the user with maximum flexibility to innovate, coupled with many 

workload-oriented features such as: General Matrix Multiply (GEMM) operation acceleration, special-functions 

dedicated hardware, tensor addressing and latency hiding capabilities. The TPC natively supports these mixed-

precision data types: FP32, INT32/16/8, UINT32/16/8. To achieve maximum hardware efficiency, Habana Labs 

SynapseAI® quantizer tool selects the appropriate data type by balancing throughput and performance versus 

accuracy. For predictability and low latency, Goya™ is based on software-managed, on-die memory along with 

programmable DMAs. For robustness, all memories are ECC-protected.  

All Goya engines (TPCs, GEMM and DMA) can operate concurrently and communicate via shared memory. For 

external interface, the processor uses PCIe Gen4x16 enabling communication to any host of choice. The 

processor includes two 64-bit channels of DDR4 memory interface with max capacity of 16 GB.  

The Goya architecture supports mixed precision of both integer and floating points, which allows it to flexibly 

support different workloads and applications, under quantization controls that the user can specify. 

 

 

 

Figure 1 - GOYA High-level Architecture 
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4. Software Stack and development tools  
 

Habana’s software platform is designed to provide a full software stack including flexible development 

capabilities of the programmable Tensor Processor Cores, the SynapseAI® - Habana’s home-grown compiler 

and runtime, Habana’s extensive kernel library and development tools.  

Habana provides, as part of its SW package an extensive set of TPC kernel libraries (1400+) and opens its TPC 

for the user programming, providing a complete TPC tool suite (debugger, simulator, compiler). These tools 

facilitate the development of customized TPC kernels that can augment the kernels provided by Habana Labs. 

Thus, users can quickly and easily deploy a variety of network models and algorithms on Goya to innovate and 

optimize to any unique requirements. 

The SynapseAI is built for seamless integration with existing frameworks, that both define a Neural Network for 

execution and manage the execution Runtime. SynapseAI can be interfaced directly using either C or Python 

API, It also natively supports ONNX and TensorFlow 2.2 today and will be followed by native PyTorch and ONNX 

RT support. Integrating natively into DNN frameworks like TensorFlow, SynapseAI enables users to unleash the 

power of Deep Learning by executing the algorithms efficiently using its high-level software abstraction.  

Habana Lab’s software stack seamlessly interfaces with all deep learning frameworks. A trained DNN model is 

first converted into an internal representation. Following this step, ahead-of-time (AOT) compilation is used to 

optimize the model and create a working plan for the network model execution on the Goya hardware. 

 

 

Figure 2 - GOYA Inference Platform – Software Stack 

 

Given TPC’s programmability, Goya is a very flexible platform. It enables quick adoption of different deep learning 

models and is not limited to supporting specific workloads or workloads from a specific domain.  

 

http://www.habana.ai/


 

 

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020 

6 

 

4.1. SynapseAI® - Optimizer and Runtime 
 

Habana Lab’s SynapseAI® is a comprehensive software toolkit that simplifies the development and deployment 

of deep learning models for mass-market use. The SynapseAI® software provides inference network model 

compilation (Graph Complier) and runtime. 

The Goya platform is training platform-agnostic. A DNN can be trained on any hardware platform (GPU, 

TPU, CPU or any other platform) to obtain a model. SynapseAI® imports the trained model and compiles it for 

use on the Goya platform. The result is an optimized execution code in terms of accuracy, latency, throughput, 

and efficiency. 

SynapseAI® supports automatic quantization of models trained in floating-point format with near-zero accuracy 

loss. It receives a model description and representative inputs, and automatically quantizes the 

model to fixed-point data types, thus greatly reducing execution time and increasing power efficiency. 

The user can specify the required level of performance gain and whether some accuracy may be sacrificed to 

improve performance. 
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5. GOYA Inference Performance 
 
The key factors used in assessing the performance of the Goya inference platform compared to other 
solutions are throughput (speed), power efficiency, latency and the ability to support small batch sizes.  
Below are performance results for various topologies from Tensorflow, ONNX public repositories and in-house 
topologies based on public sources. 

Software Configuration: Ubuntu v-18.04, SynapseAI v-0.11.447 
Hardware Configuration: Goya HL-100 PCIe card, Host: Xeon Gold 6152@2.10Ghzna Labs Ltd.habana.ai | 
 

Model Imported 
from  

Batch 
Size 

Latency (msec) Throughput  
(samples per 
sec) 

Mix Data Types - 
lowest Precision 

Model source 

inception V1 TF 1 0.152 12091.4 INT8 http://download.tensorflow.org/models/
inception_v1_2016_08_28.tar.gz  4 0.391 15604.4 INT8 

8 0.692 16286.9 INT8 

10 0.839 16470.3 INT8 

inception V3 TF 1 0.396 3374.2 INT8 https://storage.googleapis.com/downloa
d.tensorflow.org/models/inception_v3_2
016_08_28_frozen.pb.tar.gz  

4 1.225 4324.6 INT8 

8 2.338 4345.8 INT8 

10 2.82 4354.7 INT8 

bninception ONNX 1 0.179 8438.5 INT8 open source model 

4 0.432 12680.4 INT8 

8 0.763 13420.1 INT8 

10 0.887 13861.0 INT8 

20 1.72 14416.4 INT8 

resnet18 V1 
224,224 

ONNX 1 0.135 14544.6 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet18v1/resnet18v1.onnx 4 0.249 27628.1 INT8 

8 0.411 30676.6 INT8 

10 0.493 31566.8 INT8 

resnet18 V2 
224,224 

ONNX 1 0.184 8836.1 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/resnet/model/
resnet18-v2-7.onnx 

4 0.426 13544.8 INT8 

8 0.736 14630.4 INT8 

10 0.892 14845.9 INT8 

resnet34 V1 
224,224 

ONNX 1 0.175 8569.6 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet34v1/resnet34v1.onnx 4 0.366 15778.3 INT8 

8 0.617 17406.8 INT8 

10 0.725 18215.7 INT8 

resnet34 V2 
224,224 

ONNX 1 0.262 5563.5 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/resnet/model/
resnet34-v2-7.onnx  

4 0.602 9106.8 INT8 

8 0.993 9985.1 INT8 

10 1.263 10217.1 INT8 
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resnet50 V1 
224,224 

TF 1 0.202 7142.8 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet50v1/resnet50v1.onnx 4 0.427 12791.0 INT8 

8 0.74 13964.7 INT8 

10 0.872 14620.1 INT8 

ONNX 1 0.199 7491.9 INT8 

4 0.406 13573.3 INT8 

8 0.693 14766.6 INT8 

10 0.819 15487.7 INT8 

resnet50 V1 
160x160 

ONNX 1 0.176 8759.9 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet50v1/resnet50v1.onnx  4 0.274 20836.9 INT8 

8 0.417 25095.5 INT8 

10 0.48 27408.4 INT8 

resnet50 V1 
slim 
224,224 

TF 1 0.202 7433.6 INT8 http://download.tensorflow.org/models/
resnet_v1_50_2016_08_28.tar.gz  4 0.391 14458.6 INT8 

8 0.655 15977.0 INT8 

10 0.777 16798.2 INT8 

resnet50 V2 
224,224 

TF 1 0.293 4686.4 INT8 http://download.tensorflow.org/models/
official/20181001_resnet/savedmodels/r
esnet_v2_fp32_savedmodel_NHWC.tar.g
z  

4 0.652 7472.4 INT8 

8 1.234 8154.3 INT8 

ONNX 1 0.297 4672.3 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/resnet/model/
resnet50-v2-7.onnx  

4 0.662 7398.5 INT8 

8 1.259 8058.1 INT8 

resnet101 V1 
224,224 

ONNX 1 0.301 4579.0 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet101v1/resnet101v1.on
nx 

4 0.604 8213.1 INT8 

8 1.098 9169.6 INT8 

10 1.286 9799.9 INT8 

resnet101 V2 
224,224 

ONNX 1 0.445 2766.0 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/resnet/model/
resnet101-v2-7.onnx  

4 1.119 4154.5 INT8 

8 2.059 4513.1 INT8 

10 2.475 4596.7 INT8 

resnet152 v1 
224,224 

TF 1 0.659 1759.4 INT8 open source model 

4 0.901 4949.3 INT8 

8 1.495 6614.2 INT8 

10 1.677 7095.3 INT8 

ONNX 1 0.458 2644.6 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet152v1/resnet152v1.on
nx  

4 0.823 5742.3 INT8 

8 1.519 6419.7 INT8 

10 1.717 6856.3 INT8 

resnet152  
V1 slim 
224,224 

TF 1 0.663 1757.4 INT8 http://download.tensorflow.org/models/
resnet_v1_152_2016_08_28.tar.gz  4 0.903 4935.4 INT8 

8 1.502 6625.5 INT8 

10 1.712 7096.0 INT8 
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resnet152 V2 
224,224 

ONNX 1 0.63 1939.2 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/resnet/model/
resnet152-v2-7.onnx  

4 1.634 2948.8 INT8 

8 2.796 3208.2 INT8 

10 3.346 3258.4 INT8 

ResNext50-
32_4d 
224,224 

ONNX 1 0.349 3827.4 INT8 open source model 

4 0.783 6004.2 INT8 

8 1.475 6522.6 INT8 

10 1.766 6655.6 INT8 

resnext101_
32_4d 
224,224 

ONNX 1 0.409 3065.6 INT8 open source model 

4 1.001 4614.8 INT8 

8 1.874 5092.8 INT8 

10 2.116 5433.4 INT8 

tiny 
yolo 
v2 

1088, 
1920 

Pytorch 1 2.073 533.6 INT8 https://github.com/marvis/pytorch-yolo2 

320, 
320 

1 0.169 10971.3 INT8 https://github.com/marvis/pytorch-yolo2 

416, 
416 

1 0.227 8117.5 INT8 https://github.com/marvis/pytorch-yolo2 

608, 
608 

1 0.414 3968.6 INT8 https://github.com/marvis/pytorch-yolo2 

960, 
960 

1 0.849 1796.7 INT8 https://github.com/marvis/pytorch-yolo2 

Yolo 
V2 

1088,
1920 

Pytorch 1 6.359 162.9 INT8 https://github.com/marvis/pytorch-yolo2 

320, 
320 

1 0.561 2226.6 INT8 https://github.com/marvis/pytorch-yolo2 

416, 
416 

1 0.713 1688.5 INT8 https://github.com/marvis/pytorch-yolo2 

544, 
736 

1 1.411 816.7 INT8 https://github.com/marvis/pytorch-yolo2 

608, 
608 

1 1.391 880.2 INT8 https://github.com/marvis/pytorch-yolo2 

960, 
960 

1 3.733 291.7 INT8 https://github.com/marvis/pytorch-yolo2 

yolo 
v3 

416, 
416 

Pytorch 1 1.111 1102.2 INT8 https://github.com/marvis/pytorch-yolo3 

960, 
960 

Pytorch 4 11.375 360.9 INT8 https://github.com/marvis/pytorch-yolo3 
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BERT squad  
BASE 
max  
sequnce 
length = 128 

MX 1 2.809 404.0 INT8 https://gluon-
nlp.mxnet.io/model_zoo/bert/index.htm  4 2.798 1611.4 INT8 

8 2.816 2226.2 INT8 

10 3.191 2477.7 INT8 

10 5.762 1726.4 INT16 

12 3.59 2773.8 INT8 

bert mrpc  
BASE  
max  
sequnce 
length = 128 

MX 1 2.822 402.8 INT8 

4 2.762 1605.9 INT8 

8 2.83 2211.6 INT8 

10 3.196 2455.4 INT8 

10 5.777 1722.6 INT16 

12 6.877 1762.8 INT16 

bvlc_googlen
et 
224,224 

ONNX 1 0.278 5113.7 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/inception_and
_googlenet/googlenet/model/googlenet-
7.onnx 

googlenet_b
n_no_lrn 
224,224 

ONNX 1 0.141 12787.4 INT8 Developed inhouse based on Googlenet 
with batch norm and w/o LRN  4 0.345 17558.0 INT8 

8 0.592 18424.7 INT8 

10 0.715 18530.5 INT8 

Squeezenet 
1.1 
224,224 

ONNX 1 0.107 23281.0 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/squeezenet/m
odel/squeezenet1.1-7.onnx  

4 0.209 36321.4 INT8 

8 0.373 37740.1 INT8 

10 0.46 37843.9 INT8 

ssd-vgg16 
300,300 

MX 1 0.833 1466.1 INT8 http://github.com/zhreshold/mxnet-
ssd/blob/master/symbol/legacy_vgg16_s
sd_300.py   

 

 Table 1: GOYA Inference Performance Benchmarks 

 

5.1 Resnet-50 
 

Resnet-50 is a convolutional neural network that is trained on the ImageNet database and classify images into 
1000 object categories, it is considered as one of the most popular application benchmarks for image 
classification. 
 
The Goya PCIe card provides measured throughput of 15,488 images/second for the ResNet-50 workload at an 
extreme low latency of 0.82 msec, well below the industry requirement of 7 msec. Moreover, as can be shown 
in the chart below, the Goya's performance is sustainable at a small batch size, allowing it to support real-time 
applications with high throughput, the scaling in batch size enable Goya’s customers to utilize the same 
processor for multiple use cases, switching from latency to throughput driven tasks. This economy enables 
Goya’s datacenter customers reducing their TCO and expanses. 
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https://github.com/onnx/models/blob/master/vision/classification/squeezenet/model/squeezenet1.1-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/squeezenet/model/squeezenet1.1-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/squeezenet/model/squeezenet1.1-7.onnx
http://github.com/zhreshold/mxnet-ssd/blob/master/symbol/legacy_vgg16_ssd_300.py
http://github.com/zhreshold/mxnet-ssd/blob/master/symbol/legacy_vgg16_ssd_300.py
http://github.com/zhreshold/mxnet-ssd/blob/master/symbol/legacy_vgg16_ssd_300.py
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Figure 3 - GOYA ResNet50 Throughput and Latency 

 
 
Software Configuration: Ubuntu v-18.04, SynapseAI v-0.11.447 

Hardware Configuration: Goya HL-100 PCIe card, Host: Xeon Gold 6152@2.10Ghzna 

 

5.2 Googlenet 
 

The Googlenet topology was developed in 2014, opting to use Local Response Normalization (LRN) over Batch 

Normalization. LRN is more computationally expensive. We have improved the throughput when replacing LRN 

with BN, which also results in improved accuracy, 72% top1 versus 68% originally. As this replacement reduces 

the amount of computation while improving accuracy, we expect it to perform better on any inference processor. 

Therefore, we are offering this improved topology (Googlenet_bn_no_lrn) on demand. Other than replacing LRN 

with BN, the topology has exactly the same structure. 

 

5.3 Goya Performance in the ML-Perf v0.5 benchmark 
 

The MLPerf was founded in 2018 by researchers from Baidu, Google, Harvard University, Stanford University, 

and the University of California Berkeley and becomes today the de-facto benchmarking tool for AI training and 

inference performance of ML hardware and software. 

MLPerf launched the Inference benchmark suite on June 2019 and  published the first Inference MLPerf 

benchmark results in November 2019 (https://mlperf.org/inference-results/). 

MLPerf splits results into two divisions, closed and open. The Closed division allows for solution comparisons, 

adhering to an explicit set of rules; the open division allows vendors to more favorably showcase their solution(s) 

without the restrictive rules of the closed. Customers evaluating these results are also provided additional 

categories to help them discern which solutions are mature and commercially available (“available” category) vs 

”preview” or ”research,” categories, which include hardware/software either not yet publicly available or 

experimental/for research purposes. Additional data is provided for the specific hardware (processors and 

systems) used in running the benchmarks, including details of the number of  accelerators per solution evaluated, 

and the complexity of the host system used to measure the inferencing results (CPU generation, air-cooling vs. 

liquid-cooling) and more. 

This is an essential industry initiative that will truly help customers determine which solutions are actually 

available for them to deploy (as opposed to just “preview”), and while the report is incomplete in scope - not yet 

measuring power, for instance - it is a critical first step toward the industry providing standardized, valid 

measures.  

http://www.habana.ai/
https://mlperf.org/inference-results/
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Following are the Goya MLpPerf Inference v0.5 results using a single Goya card, passive air cooling on an 

affordable host, an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, delivers the following results, in the 

Available category. 

 

 

Figure 4 - MLPerf Inference v0.5 Results 

 

In addition to the above results in the closed division, Habana has also contributed results that show Goya’s 

superior throughput under latency constraints, which benefits real-time applications. Such tests are available in 

the Open division:  

contribution follows the closed submission rules with only one change – more strict latency constraints for Multi-Stream 
scenario. 

• ResNet-50: Goya delivers 20 Samples-Per-Query (SPQ) under latency constraint of 2ms and 40 SPQ under 3.3ms 
latency constraint. Thus, Goya is up to 25 times faster than the required latency for the closed division (50ms). 

• SSD-large: Goya delivers 4 SPQ under latency constraint of 16.8ms and 8 SPQ under 30.8ms latency constraint, 
up to 4 times faster than the required latency for closed division (66ms) 

 

MLPERF v0.5 includes the well-established vision benchmarks such as ResNet-50 and SSD-large, but it has not yet 

included BERT, which has achieved state-of-the-art results on many language tasks, and as such, is very popular among 

cloud service providers. Please refer to our BERT results in the next section.    

http://www.habana.ai/
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5.4 BERT 
 

One of challenges implementing natural language processing (NLP) applications is the cost of training resources. 

Many NLP (natural language processing) use cases require large amounts of data in ordered to be trained. In 

order to reuse and save training compute, time and costs, researchers have developed a pre-training method, 

training general purpose language representation models, based on enormous amount of unannotated text. This 

pre-trained model can then be fine-tuned using small amounts of data and with an additional, lean, output layer 

create state-of-the-art models for a wide range of tasks like question answering, text summation, text 

classification (e.g. spam or not) and sentiment analysis, resulting also in substantial accuracy improvement, 

compared to training on these datasets from scratch. 

 

Figure 5 - BERT Two Phases: Pre-Trained Model and Specific Task Fine-Tuning 

The approach pioneered by BERT constitutes a paradigm shift in language modelling using deep learning 

models, by offering a strong representation that can be used in transfer-learning new tasks. New models and 

techniques based on the BERT architecture have quickly taken their place as the de-facto standard in text 

understanding. BERT makes use of Transformer, an attention mechanism that learns contextual relations 

between words (or sub-words) in a text. It consists of multiple, multi-head self-attention layers, that leverage a 

bidirectional context conditioning on the input text, allowing the model to learn the context of a word based on all 

its surroundings (beginning and end of each sentence). Ltd. |ai | Aug 2019 11 

 
 

http://www.habana.ai/
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5.4.1. BERT Inference Using GOYA 

 

The GOYA inference architecture delivers exceptional inference performance for the BERT workloads. All of 

BERT operators are natively supported by the Goya Inference processor and can be executed on Goya without 

any host intervention. A mixed precision implementation is deployed, using Habana’s quantization tools which 

set the required precision per operator to maximize performance while maintaining accuracy.  

BERT is amenable to quantization, with either zero or negligible accuracy loss, while GEMM operations are 

execute at INT8, some other operations, like Layer Normalization, are done in FP32. 

 

Goya’s heterogenous architecture is an ideal match to the BERT workload, as both the GEMM 

engine and the TPCs are fully utilized, supporting low batch sizes at high throughput. Goya’s TPC provides 

significant speedup when calculating BERT's nonlinear functions resulting in leading benchmark results. In 

addition, the Goya’s software-managed SRAM allows increased efficiency between different memory 

hierarchies, while executing. 

Below are performance results measured on Goya, for a question answering task, identifying the answer to the 

input question within the paragraph, based on Stanford Question Answering Database (SQuAD). 

The tested topologies are BERTBase, Layers=12 Hidden Size=768 Heads=12 Intermediate Size=3,072 Max 

Seq Len = 128  

To quantify and benchmark this task, we used an off the shelf available model - https://gluon-

nlp.mxnet.io/model_zoo/bert/index.html 

 

 

Figure 6 - BERT- Base SQuAD Inference Benchmark 

  
Hardware: 1x Goya HL-100; CPU Xeon Gold 6152@2.1 GHz; Software: Ubuntu v-18.04; 
Software: SynapseAI v-0.11.0-447; 
 
 

The Goya processor delivers high throughput on the SQuAD task at extreme low latency. As the BERT model is 

foundational to many NLP applications, we expect similar inference speedups for other NLP applications based 

on it with their own fined tune layers. Moreover, the Goya architecture is scalable and keep its high efficiency 

while increasing the batch size. 

 

 

2019 Habana Labs Ltd. | www.habana.ai | Aug 2019 12 

http://www.habana.ai/
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6. Summary 

 

Deep learning revolutionizes computing, impacting enterprises and the services and experiences they can 

deliver across multiple industrial and consumer sectors. Deep neural networks are becoming exponentially larger 

and more complex, driving massive computing demands and costs. Modern neural networks are too compute-

intensive for traditional CPUs, and even GPUs. The future belongs to dedicated high throughput, low latency, 

low power AI processors.  

Inference performance is measured by throughput, power efficiency, latency and accuracy, all of which are 

critical to delivering both data center efficiency and great user experiences. The Goya is a world class, high 

performance, AI processor for inference workloads. It is supported by state-of-art software development 

tools and a full software stack. 

An effective deep learning platform must have the following characteristics: 

• A processor that is custom-built for deep learning 

• That's software-programmable 

 

Habana Labs' Goya AI Inference Platform meets all these requirements. 
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