

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

1

Goya Inference Platform

White Paper

Nov 2020

2019 Habana Labs Ltd. | www.habana.ai | Aug 2019
2019 Habana Labs Ltd. | www.habana.ai | Aug 2019 1

http://www.habana.ai/

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

2

Table of Contents

1. Introduction ... 3

2. Deep Learning Workflows – Training and Inference .. 3

3. GOYA Processor High-level Architecture ... 4

4. Software Stack and development tools .. 5

4.1. SynapseAI® - Optimizer and Runtime ... 6

5. GOYA Inference Performance ... 7

5.1 Resnet-50 .. 10

5.2 Googlenet .. 11

5.3 Goya Performance in the ML-Perf v0.5 benchmark .. 11

5.4 BERT ... 13

5.4.1. BERT Inference Using GOYA ... 14

6. Summary ... 15

List of Figures and Tables

Figure 1 - GOYA High-level Architecture .. 4

Figure 2 - GOYA Inference Platform – Software Stack ... 5

Figure 3 - Resnet-50 Throughput and Latency ... 7

Figure 4 - MLPerf Inference v0.5 Results ... 12

Figure 5 - BERT Two Phases: Pre-Trained Model and Specific Task Fine-Tuning 13

Figure 6 - BERT- Base SQuAD Inference Benchmark .. 14

Table 1 - GOYA Inference Perfromance Benchmark Error! Bookmark not defined.

The information contained in this document is subject to change without notice.

http://www.habana.ai/

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

3

1. Introduction

Demand for high-performance AI compute has doubled in size rapidly and is accelerating with the multiple

domains, growing number of applications and services (e.g. image and gesture recognition in videos, speech

recognition, natural language processing, recommendation systems and more), such problems which several

years ago were considered difficult for machines to solve, are now solved as accurately as by human beings and

more, using deep learning models. As such, deep learning is a transformational technology.

A typical deep learning algorithm comprises of multiple operators, such as matrix multiplication, convolutions,

and other tensor operators, which add up to billions of compute-intensive operations. The execution of this

massive amount of operations can be accelerated by using the inherent parallel processing that advanced GPUs

offer. However, GPUs, which are primarily designed to render graphics in a super-fast way, are not optimized

for deep learning workloads. The existing solution’s inefficiency for deep learning workloads has a severe impact

on the operational costs of cloud providers and data centers. To address this issue, a new class of software

programmable AI processors are emerging, designed from the bottom-up for DNN workloads.

Habana’s Goya is an AI accelerator card dedicated for inference workloads. The Goya processor is an

AI inference processor, designed specifically to deliver superior performance with low latency, power

efficiency and cost savings for cloud, data centers and other emerging applications.

2019 Habana Labs Ltd. | www.habana.ai | Aug 2019 3

2. Deep Learning Workflows – Training and Inference

A deep learning workflow consists of two conceptual steps:

• Training - adjusts neural network model parameters to perform well on given data
• Inference - executes a trained neural network model on new data to obtain the output

For a model to address a specific use case, one first needs to train the model. Once the model is trained, it can

be used (for inference). Both training and inference have similar characteristics, but different hardware resource

requirements.

During training, a large dataset is processed to train a neural network model so that the model will distinguish

between different statistical properties of the samples within the dataset. After the model is ready for use, i.e.,

the model meets the accuracy goals, the model is ready for deployment. In a production environment, the model

is used to efficiently process a new set of inputs to which it was not exposed during training. This operation is

called inference and the goal of this phase is to infer attributes in the new data using the trained model.

Although Habana’s training and Inference processors uses the same building blocks, there are some

fundamental differences which required different architecture solutions - Training workloads require high-

bandwidth memories with large capacity, in addition to the memory requirements for chip-to-chip communication.

These requirements greatly increase solution BOM and its power consumption.

Inference is critical to support real-time applications such as natural language processing, recommendation

systems, speech recognition and many others. Therefore, inference is required to complete with low latency. In

addition, providing high throughput with low batch sizes is also critical for inference of many applications. To

provide comprehensive inference capabilities, an inference solution should provide high throughput, low latency,

low power and be cost effective.

9

http://www.habana.ai/

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

4

3. GOYA Processor High-level Architecture

The Goya Inference Processor is based on the scalable architecture of Habana’s Tensor-Processing Core (TPC)

and includes a cluster of eight programmable cores. TPC is Habana’s proprietary core designed to support deep

learning workloads. It is a VLIW SIMD vector processor with Instruction-Set-Architecture and hardware tailored

to serve deep learning workloads efficiently.

The TPC is C/C++ programmable, providing the user with maximum flexibility to innovate, coupled with many

workload-oriented features such as: General Matrix Multiply (GEMM) operation acceleration, special-functions

dedicated hardware, tensor addressing and latency hiding capabilities. The TPC natively supports these mixed-

precision data types: FP32, INT32/16/8, UINT32/16/8. To achieve maximum hardware efficiency, Habana Labs

SynapseAI® quantizer tool selects the appropriate data type by balancing throughput and performance versus

accuracy. For predictability and low latency, Goya™ is based on software-managed, on-die memory along with

programmable DMAs. For robustness, all memories are ECC-protected.

All Goya engines (TPCs, GEMM and DMA) can operate concurrently and communicate via shared memory. For

external interface, the processor uses PCIe Gen4x16 enabling communication to any host of choice. The

processor includes two 64-bit channels of DDR4 memory interface with max capacity of 16 GB.

The Goya architecture supports mixed precision of both integer and floating points, which allows it to flexibly

support different workloads and applications, under quantization controls that the user can specify.

Figure 1 - GOYA High-level Architecture

http://www.habana.ai/

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

5

4. Software Stack and development tools

Habana’s software platform is designed to provide a full software stack including flexible development

capabilities of the programmable Tensor Processor Cores, the SynapseAI® - Habana’s home-grown compiler

and runtime, Habana’s extensive kernel library and development tools.

Habana provides, as part of its SW package an extensive set of TPC kernel libraries (1400+) and opens its TPC

for the user programming, providing a complete TPC tool suite (debugger, simulator, compiler). These tools

facilitate the development of customized TPC kernels that can augment the kernels provided by Habana Labs.

Thus, users can quickly and easily deploy a variety of network models and algorithms on Goya to innovate and

optimize to any unique requirements.

The SynapseAI is built for seamless integration with existing frameworks, that both define a Neural Network for

execution and manage the execution Runtime. SynapseAI can be interfaced directly using either C or Python

API, It also natively supports ONNX and TensorFlow 2.2 today and will be followed by native PyTorch and ONNX

RT support. Integrating natively into DNN frameworks like TensorFlow, SynapseAI enables users to unleash the

power of Deep Learning by executing the algorithms efficiently using its high-level software abstraction.

Habana Lab’s software stack seamlessly interfaces with all deep learning frameworks. A trained DNN model is

first converted into an internal representation. Following this step, ahead-of-time (AOT) compilation is used to

optimize the model and create a working plan for the network model execution on the Goya hardware.

Figure 2 - GOYA Inference Platform – Software Stack

Given TPC’s programmability, Goya is a very flexible platform. It enables quick adoption of different deep learning

models and is not limited to supporting specific workloads or workloads from a specific domain.

http://www.habana.ai/

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

6

4.1. SynapseAI® - Optimizer and Runtime

Habana Lab’s SynapseAI® is a comprehensive software toolkit that simplifies the development and deployment

of deep learning models for mass-market use. The SynapseAI® software provides inference network model

compilation (Graph Complier) and runtime.

The Goya platform is training platform-agnostic. A DNN can be trained on any hardware platform (GPU,

TPU, CPU or any other platform) to obtain a model. SynapseAI® imports the trained model and compiles it for

use on the Goya platform. The result is an optimized execution code in terms of accuracy, latency, throughput,

and efficiency.

SynapseAI® supports automatic quantization of models trained in floating-point format with near-zero accuracy

loss. It receives a model description and representative inputs, and automatically quantizes the

model to fixed-point data types, thus greatly reducing execution time and increasing power efficiency.

The user can specify the required level of performance gain and whether some accuracy may be sacrificed to

improve performance.

2019 Habana Labs Ltd. | www.habana.ai | Aug 2019 6

http://www.habana.ai/

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

7

5. GOYA Inference Performance

The key factors used in assessing the performance of the Goya inference platform compared to other
solutions are throughput (speed), power efficiency, latency and the ability to support small batch sizes.
Below are performance results for various topologies from Tensorflow, ONNX public repositories and in-house
topologies based on public sources.

Software Configuration: Ubuntu v-18.04, SynapseAI v-0.11.447
Hardware Configuration: Goya HL-100 PCIe card, Host: Xeon Gold 6152@2.10Ghzna Labs Ltd.habana.ai |

Model Imported
from

Batch
Size

Latency (msec) Throughput
(samples per
sec)

Mix Data Types -
lowest Precision

Model source

inception V1 TF 1 0.152 12091.4 INT8 http://download.tensorflow.org/models/
inception_v1_2016_08_28.tar.gz 4 0.391 15604.4 INT8

8 0.692 16286.9 INT8

10 0.839 16470.3 INT8

inception V3 TF 1 0.396 3374.2 INT8 https://storage.googleapis.com/downloa
d.tensorflow.org/models/inception_v3_2
016_08_28_frozen.pb.tar.gz

4 1.225 4324.6 INT8

8 2.338 4345.8 INT8

10 2.82 4354.7 INT8

bninception ONNX 1 0.179 8438.5 INT8 open source model

4 0.432 12680.4 INT8

8 0.763 13420.1 INT8

10 0.887 13861.0 INT8

20 1.72 14416.4 INT8

resnet18 V1
224,224

ONNX 1 0.135 14544.6 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet18v1/resnet18v1.onnx 4 0.249 27628.1 INT8

8 0.411 30676.6 INT8

10 0.493 31566.8 INT8

resnet18 V2
224,224

ONNX 1 0.184 8836.1 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/resnet/model/
resnet18-v2-7.onnx

4 0.426 13544.8 INT8

8 0.736 14630.4 INT8

10 0.892 14845.9 INT8

resnet34 V1
224,224

ONNX 1 0.175 8569.6 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet34v1/resnet34v1.onnx 4 0.366 15778.3 INT8

8 0.617 17406.8 INT8

10 0.725 18215.7 INT8

resnet34 V2
224,224

ONNX 1 0.262 5563.5 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/resnet/model/
resnet34-v2-7.onnx

4 0.602 9106.8 INT8

8 0.993 9985.1 INT8

10 1.263 10217.1 INT8

http://www.habana.ai/
http://download.tensorflow.org/models/inception_v1_2016_08_28.tar.gz
http://download.tensorflow.org/models/inception_v1_2016_08_28.tar.gz
https://storage.googleapis.com/download.tensorflow.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz
https://storage.googleapis.com/download.tensorflow.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz
https://storage.googleapis.com/download.tensorflow.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet18v1/resnet18v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet18v1/resnet18v1.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet18-v2-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet18-v2-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet18-v2-7.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet34v1/resnet34v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet34v1/resnet34v1.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet34-v2-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet34-v2-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet34-v2-7.onnx

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

8

resnet50 V1
224,224

TF 1 0.202 7142.8 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet50v1/resnet50v1.onnx 4 0.427 12791.0 INT8

8 0.74 13964.7 INT8

10 0.872 14620.1 INT8

ONNX 1 0.199 7491.9 INT8

4 0.406 13573.3 INT8

8 0.693 14766.6 INT8

10 0.819 15487.7 INT8

resnet50 V1
160x160

ONNX 1 0.176 8759.9 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet50v1/resnet50v1.onnx 4 0.274 20836.9 INT8

8 0.417 25095.5 INT8

10 0.48 27408.4 INT8

resnet50 V1
slim
224,224

TF 1 0.202 7433.6 INT8 http://download.tensorflow.org/models/
resnet_v1_50_2016_08_28.tar.gz 4 0.391 14458.6 INT8

8 0.655 15977.0 INT8

10 0.777 16798.2 INT8

resnet50 V2
224,224

TF 1 0.293 4686.4 INT8 http://download.tensorflow.org/models/
official/20181001_resnet/savedmodels/r
esnet_v2_fp32_savedmodel_NHWC.tar.g
z

4 0.652 7472.4 INT8

8 1.234 8154.3 INT8

ONNX 1 0.297 4672.3 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/resnet/model/
resnet50-v2-7.onnx

4 0.662 7398.5 INT8

8 1.259 8058.1 INT8

resnet101 V1
224,224

ONNX 1 0.301 4579.0 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet101v1/resnet101v1.on
nx

4 0.604 8213.1 INT8

8 1.098 9169.6 INT8

10 1.286 9799.9 INT8

resnet101 V2
224,224

ONNX 1 0.445 2766.0 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/resnet/model/
resnet101-v2-7.onnx

4 1.119 4154.5 INT8

8 2.059 4513.1 INT8

10 2.475 4596.7 INT8

resnet152 v1
224,224

TF 1 0.659 1759.4 INT8 open source model

4 0.901 4949.3 INT8

8 1.495 6614.2 INT8

10 1.677 7095.3 INT8

ONNX 1 0.458 2644.6 INT8 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet152v1/resnet152v1.on
nx

4 0.823 5742.3 INT8

8 1.519 6419.7 INT8

10 1.717 6856.3 INT8

resnet152
V1 slim
224,224

TF 1 0.663 1757.4 INT8 http://download.tensorflow.org/models/
resnet_v1_152_2016_08_28.tar.gz 4 0.903 4935.4 INT8

8 1.502 6625.5 INT8

10 1.712 7096.0 INT8

http://www.habana.ai/
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v1/resnet50v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v1/resnet50v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v1/resnet50v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v1/resnet50v1.onnx
http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz
http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz
http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v2_fp32_savedmodel_NHWC.tar.gz
http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v2_fp32_savedmodel_NHWC.tar.gz
http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v2_fp32_savedmodel_NHWC.tar.gz
http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v2_fp32_savedmodel_NHWC.tar.gz
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet50-v2-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet50-v2-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet50-v2-7.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet101v1/resnet101v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet101v1/resnet101v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet101v1/resnet101v1.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet101-v2-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet101-v2-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet101-v2-7.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet152v1/resnet152v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet152v1/resnet152v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet152v1/resnet152v1.onnx
http://download.tensorflow.org/models/resnet_v1_152_2016_08_28.tar.gz
http://download.tensorflow.org/models/resnet_v1_152_2016_08_28.tar.gz

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

9

resnet152 V2
224,224

ONNX 1 0.63 1939.2 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/resnet/model/
resnet152-v2-7.onnx

4 1.634 2948.8 INT8

8 2.796 3208.2 INT8

10 3.346 3258.4 INT8

ResNext50-
32_4d
224,224

ONNX 1 0.349 3827.4 INT8 open source model

4 0.783 6004.2 INT8

8 1.475 6522.6 INT8

10 1.766 6655.6 INT8

resnext101_
32_4d
224,224

ONNX 1 0.409 3065.6 INT8 open source model

4 1.001 4614.8 INT8

8 1.874 5092.8 INT8

10 2.116 5433.4 INT8

tiny
yolo
v2

1088,
1920

Pytorch 1 2.073 533.6 INT8 https://github.com/marvis/pytorch-yolo2

320,
320

1 0.169 10971.3 INT8 https://github.com/marvis/pytorch-yolo2

416,
416

1 0.227 8117.5 INT8 https://github.com/marvis/pytorch-yolo2

608,
608

1 0.414 3968.6 INT8 https://github.com/marvis/pytorch-yolo2

960,
960

1 0.849 1796.7 INT8 https://github.com/marvis/pytorch-yolo2

Yolo
V2

1088,
1920

Pytorch 1 6.359 162.9 INT8 https://github.com/marvis/pytorch-yolo2

320,
320

1 0.561 2226.6 INT8 https://github.com/marvis/pytorch-yolo2

416,
416

1 0.713 1688.5 INT8 https://github.com/marvis/pytorch-yolo2

544,
736

1 1.411 816.7 INT8 https://github.com/marvis/pytorch-yolo2

608,
608

1 1.391 880.2 INT8 https://github.com/marvis/pytorch-yolo2

960,
960

1 3.733 291.7 INT8 https://github.com/marvis/pytorch-yolo2

yolo
v3

416,
416

Pytorch 1 1.111 1102.2 INT8 https://github.com/marvis/pytorch-yolo3

960,
960

Pytorch 4 11.375 360.9 INT8 https://github.com/marvis/pytorch-yolo3

http://www.habana.ai/
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet152-v2-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet152-v2-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/resnet/model/resnet152-v2-7.onnx
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2
https://github.com/marvis/pytorch-yolo2

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

10

BERT squad
BASE
max
sequnce
length = 128

MX 1 2.809 404.0 INT8 https://gluon-
nlp.mxnet.io/model_zoo/bert/index.htm 4 2.798 1611.4 INT8

8 2.816 2226.2 INT8

10 3.191 2477.7 INT8

10 5.762 1726.4 INT16

12 3.59 2773.8 INT8

bert mrpc
BASE
max
sequnce
length = 128

MX 1 2.822 402.8 INT8

4 2.762 1605.9 INT8

8 2.83 2211.6 INT8

10 3.196 2455.4 INT8

10 5.777 1722.6 INT16

12 6.877 1762.8 INT16

bvlc_googlen
et
224,224

ONNX 1 0.278 5113.7 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/inception_and
_googlenet/googlenet/model/googlenet-
7.onnx

googlenet_b
n_no_lrn
224,224

ONNX 1 0.141 12787.4 INT8 Developed inhouse based on Googlenet
with batch norm and w/o LRN 4 0.345 17558.0 INT8

8 0.592 18424.7 INT8

10 0.715 18530.5 INT8

Squeezenet
1.1
224,224

ONNX 1 0.107 23281.0 INT8 https://github.com/onnx/models/blob/m
aster/vision/classification/squeezenet/m
odel/squeezenet1.1-7.onnx

4 0.209 36321.4 INT8

8 0.373 37740.1 INT8

10 0.46 37843.9 INT8

ssd-vgg16
300,300

MX 1 0.833 1466.1 INT8 http://github.com/zhreshold/mxnet-
ssd/blob/master/symbol/legacy_vgg16_s
sd_300.py

 Table 1: GOYA Inference Performance Benchmarks

5.1 Resnet-50

Resnet-50 is a convolutional neural network that is trained on the ImageNet database and classify images into
1000 object categories, it is considered as one of the most popular application benchmarks for image
classification.

The Goya PCIe card provides measured throughput of 15,488 images/second for the ResNet-50 workload at an
extreme low latency of 0.82 msec, well below the industry requirement of 7 msec. Moreover, as can be shown
in the chart below, the Goya's performance is sustainable at a small batch size, allowing it to support real-time
applications with high throughput, the scaling in batch size enable Goya’s customers to utilize the same
processor for multiple use cases, switching from latency to throughput driven tasks. This economy enables
Goya’s datacenter customers reducing their TCO and expanses.

http://www.habana.ai/
https://gluon-nlp.mxnet.io/model_zoo/bert/index.htm
https://gluon-nlp.mxnet.io/model_zoo/bert/index.htm
https://github.com/onnx/models/blob/master/vision/classification/inception_and_googlenet/googlenet/model/googlenet-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/inception_and_googlenet/googlenet/model/googlenet-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/inception_and_googlenet/googlenet/model/googlenet-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/inception_and_googlenet/googlenet/model/googlenet-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/squeezenet/model/squeezenet1.1-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/squeezenet/model/squeezenet1.1-7.onnx
https://github.com/onnx/models/blob/master/vision/classification/squeezenet/model/squeezenet1.1-7.onnx
http://github.com/zhreshold/mxnet-ssd/blob/master/symbol/legacy_vgg16_ssd_300.py
http://github.com/zhreshold/mxnet-ssd/blob/master/symbol/legacy_vgg16_ssd_300.py
http://github.com/zhreshold/mxnet-ssd/blob/master/symbol/legacy_vgg16_ssd_300.py

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

11

Figure 3 - GOYA ResNet50 Throughput and Latency

Software Configuration: Ubuntu v-18.04, SynapseAI v-0.11.447

Hardware Configuration: Goya HL-100 PCIe card, Host: Xeon Gold 6152@2.10Ghzna

5.2 Googlenet

The Googlenet topology was developed in 2014, opting to use Local Response Normalization (LRN) over Batch

Normalization. LRN is more computationally expensive. We have improved the throughput when replacing LRN

with BN, which also results in improved accuracy, 72% top1 versus 68% originally. As this replacement reduces

the amount of computation while improving accuracy, we expect it to perform better on any inference processor.

Therefore, we are offering this improved topology (Googlenet_bn_no_lrn) on demand. Other than replacing LRN

with BN, the topology has exactly the same structure.

5.3 Goya Performance in the ML-Perf v0.5 benchmark

The MLPerf was founded in 2018 by researchers from Baidu, Google, Harvard University, Stanford University,

and the University of California Berkeley and becomes today the de-facto benchmarking tool for AI training and

inference performance of ML hardware and software.

MLPerf launched the Inference benchmark suite on June 2019 and published the first Inference MLPerf

benchmark results in November 2019 (https://mlperf.org/inference-results/).

MLPerf splits results into two divisions, closed and open. The Closed division allows for solution comparisons,

adhering to an explicit set of rules; the open division allows vendors to more favorably showcase their solution(s)

without the restrictive rules of the closed. Customers evaluating these results are also provided additional

categories to help them discern which solutions are mature and commercially available (“available” category) vs

”preview” or ”research,” categories, which include hardware/software either not yet publicly available or

experimental/for research purposes. Additional data is provided for the specific hardware (processors and

systems) used in running the benchmarks, including details of the number of accelerators per solution evaluated,

and the complexity of the host system used to measure the inferencing results (CPU generation, air-cooling vs.

liquid-cooling) and more.

This is an essential industry initiative that will truly help customers determine which solutions are actually

available for them to deploy (as opposed to just “preview”), and while the report is incomplete in scope - not yet

measuring power, for instance - it is a critical first step toward the industry providing standardized, valid

measures.

http://www.habana.ai/
https://mlperf.org/inference-results/

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

12

Following are the Goya MLpPerf Inference v0.5 results using a single Goya card, passive air cooling on an

affordable host, an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, delivers the following results, in the

Available category.

Figure 4 - MLPerf Inference v0.5 Results

In addition to the above results in the closed division, Habana has also contributed results that show Goya’s

superior throughput under latency constraints, which benefits real-time applications. Such tests are available in

the Open division:

contribution follows the closed submission rules with only one change – more strict latency constraints for Multi-Stream
scenario.

• ResNet-50: Goya delivers 20 Samples-Per-Query (SPQ) under latency constraint of 2ms and 40 SPQ under 3.3ms
latency constraint. Thus, Goya is up to 25 times faster than the required latency for the closed division (50ms).

• SSD-large: Goya delivers 4 SPQ under latency constraint of 16.8ms and 8 SPQ under 30.8ms latency constraint,
up to 4 times faster than the required latency for closed division (66ms)

MLPERF v0.5 includes the well-established vision benchmarks such as ResNet-50 and SSD-large, but it has not yet

included BERT, which has achieved state-of-the-art results on many language tasks, and as such, is very popular among

cloud service providers. Please refer to our BERT results in the next section.

http://www.habana.ai/

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

13

5.4 BERT

One of challenges implementing natural language processing (NLP) applications is the cost of training resources.

Many NLP (natural language processing) use cases require large amounts of data in ordered to be trained. In

order to reuse and save training compute, time and costs, researchers have developed a pre-training method,

training general purpose language representation models, based on enormous amount of unannotated text. This

pre-trained model can then be fine-tuned using small amounts of data and with an additional, lean, output layer

create state-of-the-art models for a wide range of tasks like question answering, text summation, text

classification (e.g. spam or not) and sentiment analysis, resulting also in substantial accuracy improvement,

compared to training on these datasets from scratch.

Figure 5 - BERT Two Phases: Pre-Trained Model and Specific Task Fine-Tuning

The approach pioneered by BERT constitutes a paradigm shift in language modelling using deep learning

models, by offering a strong representation that can be used in transfer-learning new tasks. New models and

techniques based on the BERT architecture have quickly taken their place as the de-facto standard in text

understanding. BERT makes use of Transformer, an attention mechanism that learns contextual relations

between words (or sub-words) in a text. It consists of multiple, multi-head self-attention layers, that leverage a

bidirectional context conditioning on the input text, allowing the model to learn the context of a word based on all

its surroundings (beginning and end of each sentence). Ltd. |ai | Aug 2019 11

http://www.habana.ai/

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

14

5.4.1. BERT Inference Using GOYA

The GOYA inference architecture delivers exceptional inference performance for the BERT workloads. All of

BERT operators are natively supported by the Goya Inference processor and can be executed on Goya without

any host intervention. A mixed precision implementation is deployed, using Habana’s quantization tools which

set the required precision per operator to maximize performance while maintaining accuracy.

BERT is amenable to quantization, with either zero or negligible accuracy loss, while GEMM operations are

execute at INT8, some other operations, like Layer Normalization, are done in FP32.

Goya’s heterogenous architecture is an ideal match to the BERT workload, as both the GEMM

engine and the TPCs are fully utilized, supporting low batch sizes at high throughput. Goya’s TPC provides

significant speedup when calculating BERT's nonlinear functions resulting in leading benchmark results. In

addition, the Goya’s software-managed SRAM allows increased efficiency between different memory

hierarchies, while executing.

Below are performance results measured on Goya, for a question answering task, identifying the answer to the

input question within the paragraph, based on Stanford Question Answering Database (SQuAD).

The tested topologies are BERTBase, Layers=12 Hidden Size=768 Heads=12 Intermediate Size=3,072 Max

Seq Len = 128

To quantify and benchmark this task, we used an off the shelf available model - https://gluon-

nlp.mxnet.io/model_zoo/bert/index.html

Figure 6 - BERT- Base SQuAD Inference Benchmark

Hardware: 1x Goya HL-100; CPU Xeon Gold 6152@2.1 GHz; Software: Ubuntu v-18.04;
Software: SynapseAI v-0.11.0-447;

The Goya processor delivers high throughput on the SQuAD task at extreme low latency. As the BERT model is

foundational to many NLP applications, we expect similar inference speedups for other NLP applications based

on it with their own fined tune layers. Moreover, the Goya architecture is scalable and keep its high efficiency

while increasing the batch size.

2019 Habana Labs Ltd. | www.habana.ai | Aug 2019 12

http://www.habana.ai/

© 201 © 2020 Habana Labs (an Intel Company) | www.habana.ai | Ver 2.0 | Nov 2020

15

6. Summary

Deep learning revolutionizes computing, impacting enterprises and the services and experiences they can

deliver across multiple industrial and consumer sectors. Deep neural networks are becoming exponentially larger

and more complex, driving massive computing demands and costs. Modern neural networks are too compute-

intensive for traditional CPUs, and even GPUs. The future belongs to dedicated high throughput, low latency,

low power AI processors.

Inference performance is measured by throughput, power efficiency, latency and accuracy, all of which are

critical to delivering both data center efficiency and great user experiences. The Goya is a world class, high

performance, AI processor for inference workloads. It is supported by state-of-art software development

tools and a full software stack.

An effective deep learning platform must have the following characteristics:

• A processor that is custom-built for deep learning

• That's software-programmable

Habana Labs' Goya AI Inference Platform meets all these requirements.

The information contained in this document is subject to change without notice.

© 2020 Habana Labs Ltd. All rights reserved. Habana Labs, Habana, the Habana Labs logo, Gaudi, TPC and SynapseAI are trademarks or registered

trademarks of Habana Labs Ltd. All other trademarks or registered trademarks and copyrights are the property of their respective owners.

http://www.habana.ai/

