

Customer Enablement

of Habana® Gaudi®
Amazon EC2 DL1

Instances

September 2021

Contents
1. Introduction .. 1

2. Gaudi Architecture .. 1

3. SynapseAI® Software Suite ... 2

3.1. Graph Compiler and Runtime ... 2

3.2. Habana Communication Libraries ... 2

3.3. TPC Programming ... 3

3.4. DL Framework Integration .. 4

3.5. Embedded Software and Tools ... 4

4. Habana Developer Platform ... 4

4.1. Vault and SynapseAI Container Registry ... 5

4.2. Habana GitHub .. 6

5. Migration to Gaudi .. 9

6. Getting Started on AWS DL1 Instances ... 10

7. Appendix ... 11

Habana Gaudi Customer Enablement

 1

1. Introduction
Demand for high-performance Deep Learning (DL) training compute is accelerating with the growing
number of applications and services based on image and gesture recognition in videos, speech
recognition, natural language processing, recommendation systems and more. With this increased
demand comes the need for greater training speed, throughput and capacity, which translate into the
growing need for efficient scaling of training systems. The Habana® Gaudi® processor is designed to
maximize training throughput and efficiency, while providing developers with optimized software and
tools that scale to many workloads and systems. Habana Gaudi software was developed with the end-
user in mind, providing versatility and ease of programming to address the unique needs of users’
proprietary models, while allowing for a simple and seamless transition of their existing models over to
Gaudi.
This document provides an overview of Habana Gaudi architecture, SynapseAI® software suite and the
Habana Developer Platform. Section 2 provides background on the Gaudi processor technology, Section
3 presents the SynapseAI Software Suite, Section 4 focuses on the Habana Developer Platform and Section
5 on enabling users migrate to Gaudi. Section 6 provides details on the Gaudi-based EC2 instances. The
Appendix contains brief information on the in-premise solutions.

2. Gaudi Architecture
Gaudi has been designed from the ground up for accelerating DL training workloads. Its heterogeneous
architecture comprises a cluster of fully programmable Tensor Processing Cores (TPC) along with its
associated development tools and libraries, and a configurable Matrix Math engine.

The TPC core is a VLIW SIMD processor with instruction set and hardware that were tailored to serve
training workloads efficiently. It is programmable, providing the user with maximum flexibility to innovate,
coupled with many workload-oriented features, such as:

• GEMM operation acceleration
• Tensor addressing
• Latency hiding capabilities
• Random number generation
• Advanced implementation of special functions

The TPC core natively supports the following data types: FP32, BF16, INT32, INT16, INT8, UINT32, UINT16
and UINT8. The Gaudi memory architecture includes on-die SRAM and local memories in each TPC. In
addition, the chip package integrates four HBM devices, providing 32 GB of capacity and 1 TB/s bandwidth.
The PCIe interface provides a host interface and supports both generation 3.0 and 4.0 modes.

Gaudi is the first DL training processor that has integrated RDMA over Converged Ethernet (RoCE v2)
engines on-chip. With bi-directional throughput of up to 2 Tb/s, these engines play a critical role in the
inter-processor communication needed during the training process. This native integration of RoCE allows
customers to use the same scaling technology, both inside the server and rack (termed as scale-up), as
well as to scale across racks (scale-out). These can be connected directly between Gaudi processors, or
through any number of standard Ethernet switches.

 2

Figure 1: Gaudi Processor High-level Architecture

3. SynapseAI® Software Suite
Designed to facilitate high-performance DL training on Habana’s Gaudi accelerators, SynapseAI Software
Suite enables efficient mapping of neural network topologies onto Gaudi hardware. The software suite
includes Habana’s graph compiler and runtime, TPC kernel library, firmware and drivers, and developer
tools such as the TPC SDK for custom kernel development and SynapseAI Profiler. SynapseAI is integrated
with the popular frameworks, TensorFlow and PyTorch, and performance-optimized for Gaudi. Figure 2
shows a pictorial view of the SynapseAI software suite.

3.1. Graph Compiler and Runtime
The SynapseAI graph compiler generates optimized binary code that implements the given model
topology on Gaudi. It performs operator fusion, data layout management, parallelization, pipelining and
memory management, and graph-level optimizations. The graph compiler uses the rich TPC kernel library,
which contains a wide variety of operations (for example, elementwise, non-linear, non-GEMM
operators). Kernels for training have two implementations, forward and backward.

Given the heterogenous nature of Gaudi hardware (Matrix Math engine, TPC and DMA), the SynapseAI
graph compiler enables effective utilization through parallel and pipelined execution of framework
graphs. SynapseAI uses stream architecture to manage concurrent execution of asynchronous tasks. It
includes multi-stream execution environment, supporting Gaudi’s unique combination of compute and
networking, exposing a multi-stream architecture to the framework. Streams of different types —
compute, networking and DMA — are synchronized with one another at high performance and with low
run-time overheads.

3.2. Habana Communication Libraries
The Habana Communication Library enables efficient scale-up communication between Gaudi processors
within a single node and scale-out across nodes for distributed training, leveraging Gaudi’s high
performance RDMA communication capabilities. It has an MPI look-and-feel and supports point-to- point
operations (for example, Write, Send) and collective operations (for example, AllReduce, AlltoAll) that are

 3

performance -optimized for Gaudi. Habana Collective Communications Library (HCCL) that is Habana’s
implementation of standard collective communication routines with NCCL-compatible API.

Figure 2: SynapseAI Software Suite

3.3. TPC Programming
 The SynapseAI TPC SDK includes an LLVM-based TPC-C compiler, a simulator and debugger. These tools
facilitate the development of custom TPC kernels, and we have used this very SDK to build the high-
performance kernels provided by Habana. Users can thereby develop customized deep learning models
and algorithms on Gaudi to innovate and optimize to their unique requirements.

The TPC programming language, TPC-C, is a derivative of C99 with added language data types to enable
easy utilization of processor-unique SIMD capabilities. It natively supports wide vector data types to assist
with programming of the SIMD engine (for example, float64, uchar256 and so on). It has many built-in
instructions for deep learning, including:

• Tensor-based memory accesses
• Accelerations for special functions
• Random number generation
• Multiple data types

 4

A TPC program consists of two parts – TPC execution code and host glue code. TPC code is the ISA executed
by the TPC processor. Host code is executed on the host machine and provides specifications regarding
how the program input/outputs can be dynamically partitioned between the numerous TPC processors in
the Habana Gaudi device.

3.4. DL Framework Integration
Popular DL frameworks such as TensorFlow and PyTorch are integrated with SynapseAI and optimized for
Gaudi. This section provides a brief overview of the SynapseAI TensorFlow integration. It illustrates how
SynapseAI does much of the mapping and optimization under the hood, while customers still enjoy the
same abstraction, they are accustomed to today.

The SynapseAI TensorFlow bridge receives a computational graph of the model from the TensorFlow
framework and identifies the subset of the graph that can be accelerated by Gaudi. These subgraphs are
encapsulated and executed optimally on Gaudi. Figure 3 shows an example of encapsulation performed
on the TensorFlow framework graph. The yellow node is not supported on Gaudi, while blue nodes can
execute on Gaudi. Subgraphs with blue nodes are identified and encapsulated. The original graph is
modified to replace the subgraphs with their corresponding encapsulated nodes.

Figure 3. Subgraph selection and encapsulation in TensorFlow framework graph

The framework runtime then executes the modified graph. Per node, a corresponding SynapseAI graph is
created and compiled. For performance optimization, the compilation recipe is cached for future use.
After allocating memory, the recipe is enqueued for execution on a SynapseAI stream.

3.5. Embedded Software and Tools
The SynapseAI software suite include embedded software and tools intended primarily for server
developers and IT personnel who manage server deployments. As these are not relevant for EC2 users,
we have not included them in this document.

4. Habana Developer Platform
Developer.habana.ai is the hub for Habana developers from where they will find Gaudi software,
optimized models, documentation and so on. Please read our blog “Introducing the Habana Developer
Site”.

https://developer.habana.ai/
https://habana.ai/introducing-the-habana-developer-site/
https://habana.ai/introducing-the-habana-developer-site/

 5

Figure 4: High-level Structure of Habana Developer Platform

Habana GitHub contains repositories open to the general public. Section 4.2 provides details on some of
the repositories available. GitHub will be the primary channel for developer support, where Habana
domain experts will actively engage in supporting developers and users. In addition, the Forum section
on Developer Platform will provide developers with another source where they can find answers to
questions and collaborate with the developer community within and outside of Habana.

The Documentation section will host detailed documentation on various software components, user
guides and release notes. It is web-based and fully searchable content. It will also contain short video
tutorials to assist end users in getting started and running models on Gaudi.

4.1. Vault and SynapseAI Container Registry
The Vault provides access to Habana hardware collateral and software releases. End users and the general
community will have Open Access to all publicly available Habana content. Privileged Access will be
provided for customers with business relationships that require NDA, such that they can download
Habana content as well as upload their proprietary content for Habana implementations into their
secured Account Vault, as needed. ODM/OEM partners will have NDA Access to download Habana
content.

Containers can be deployed easily and consistently, regardless of whether the target environment is a
private data center or the public cloud. The Gaudi-optimized DL frameworks containers are delivered with
all necessary dependencies including the complete SynapseAI software.

SynapseAI is integrated and validated with officially released versions of TensorFlow and PyTorch.
Support for framework operators, features and APIs will continue to evolve over time. We will update to

 6

and support the latest versions of framework releases. Please refer to the Release Notes on
docs.habana.ai for the supported versions.

The table below highlights supported versions as of September 2021:

Supported Frameworks TensorFlow2 and PyTorch

Operating Systems Ubuntu 18.04 and 20.04, AWS Linux2

Container Runtimes Docker (minimum Docker CE version 18.09)

Distributed Training
Schemes

TensorFlow with Horovod and tf.distribute
PyTorch distributed (native)

The Vault contains publicly available official releases of SynapseAI TensorFlow and PyTorch Docker
container images.

4.2. Habana GitHub
This section provides an overview of select repositories on Habana GitHub.

The Setup and Install repository contains instructions and guidance on setting up the environment with
Gaudi firmware and drivers, installing SynapseAI TensorFlow and PyTorch containers, and running with
containers. It also contains Dockerfiles and instructions to build your own Docker images for SynapseAI
with TensorFlow or PyTorch.

The Model References repository contains examples of DL training models (primarily vision, natural
language processing, recommendation systems) that are implemented on Habana Gaudi. Each model
comes with model scripts, recipes and instructions to run the models. As of September 2021, we have 20
models available on the GitHub. The tables below show the performance results. This information is
posted on our developer site and updated for every release.

TensorFlow Reference Models Performance*

Framework Model #HPU Precision Time to
Train

Accuracy Throughput Batch
Size

TensorFlow
2.5.1

ResNet50 Keras
LARS

1 Mixed 8h36m 76.09 1700 images/sec 256

TensorFlow
2.5.1

ResNet50 Keras
LARS (with horovod)

8 Mixed 1h11m 76.13 12200
images/sec

256

TensorFlow
2.5.1

ResNet50 Keras
LARS (with tf
distribute)

8 Mixed 1h 9min 75.96 12900
images/sec

256

TensorFlow
2.5.1

ResNet50 Keras
SGD

1 Mixed 19h
31min

76.2 1700 images/sec 256

TensorFlow
2.5.1

ResNet50 Keras
SGD

8 Mixed 2h
39min

76.3 12580
images/sec

256

TensorFlow
2.5.1

ResNet50 Keras
SGD

16 Mixed 43min 75.55 23900
images/sec

256

TensorFlow
2.5.1

ResNet50 Keras
SGD

32 Mixed 24min 75.97 46700
images/sec

256

https://github.com/HabanaAI/Setup_and_Install
https://github.com/HabanaAI/Model-References
https://developer.habana.ai/resources/habana-training-models/#performance

 7

TensorFlow
2.6.0

ResNext101 1 Mixed

79.07 663 images/sec 128

TensorFlow
2.6.0

ResNext101 8 Mixed 6h
56min

79.15 4780 images/sec 128

TensorFlow
2.5.1

SSD ResNet34 1 Mixed 3h
35min

22.97 470 images/sec 128

TensorFlow
2.5.1

SSD ResNet34 8 Mixed 35min 22.04 3406 images/sec 128

TensorFlow
2.6.0

Mask R-CNN 1 Mixed 25h
18min

33.99 15 images/sec 4

TensorFlow
2.6.0

Mask R-CNN 8 Mixed 4h
31min

34.23 99 images/sec 4

TensorFlow
2.5.1

Unet2D 1 Mixed 20min 88.79 48 images/sec 8

TensorFlow
2.5.1

Unet2D 8 Mixed 7min 88.09 360 images/sec 8

TensorFlow
2.5.1

Unet3D 1 Mixed 1h
47min

88.96 5.2 images/sec 2

TensorFlow
2.5.1

Unet3D 8 Mixed 19min 89.06 35 images/sec 2

TensorFlow
2.5.1

DenseNet (with
tf.distribute)

8 Mixed 5h
15min

73.44 5423 images/sec 128

TensorFlow
2.5.1

RetinaNet 1 fp32 8h
53min

27.35 12 images/sec 8

TensorFlow
2.6.0

BERT-Large Fine
Tuning (SQUAD)

1 Mixed 1h 8m 92.91 52 sentences/sec 24

TensorFlow
2.6.0

BERT-Large Fine
Tuning (SQUAD)

8 Mixed 22min 93.26 391
sentences/sec

24

TensorFlow
2.6.0

BERT-Large Pre
Training

1 Mixed

Phase 1 165 sps
Phase 2 258 sps

Phase 1
– 64
Phase 2
– 8

TensorFlow
2.6.0

BERT-Large Pre
Training

8 Mixed

Phase 1 1310sps
Phase 2 249 sps

Phase 1
– 64
Phase 2
– 8

TensorFlow
2.6.0

BERT-Large Pre
Training

32 Mixed 39h Phase 1
loss 1.12
Phase 2
loss 0.86

Phase 1 –
5400sps
Phase 2 –
1030sps

Phase 1
– 64
Phase 2
– 8

TensorFlow
2.6.0

Transformer 8 Mixed 17h
43min

26.5 154020 4096

TensorFlow
2.5.1

T5-base Fine Tuning 1 Mixed 16min 94.1 115 16

TensorFlow
2.5.1

Albert-Large Fine
Tuning (SQUAD)

8 Mixed 14min
42s

F1 90.9
EM 84.18

436
sentences/sec

32

TensorFlow
2.5.1

Albert-Large Pre
Training

1 Mixed

Phase 1 177sps
Phase 2 36sps

Phase 1
– 64
Phase 2
– 8

TensorFlow
2.5.1

EfficentDet 8 fp32 4days
22h

33.8 91.4 images/sec 8

 8

TensorFlow
2.5.1

CycleGan 1 Mixed 9h
25min

5.9 2

TensorFlow
2.5.1

CycleGan 8 Mixed 9h
40min

44 2

TensorFlow
2.5.1

SegNet 1 Mixed 8.5min 89.57 303 images/sec 16

TensorFlow
2.5.1

SegNet 4 Mixed 3.9min 90.6 104 ages/sec 16

PyTorch Reference Models Performance*

Framework Model #HPU Precision 1.0 TTT 1.0
Accuracy

1.0 Throughput Batch
Size

PyTorch
1.8.1

ResNet50 1 Mixed

76.04 1583 images/sec 256

PyTorch
1.8.2

ResNet50 8 Mixed 5h
37min

75.95 7350 images/sec 256

PyTorch
1.8.2

ResNet50 16 Mixed 3h
54min

75.86 12600 images/sec 256

PyTorch
1.8.2

ResNext101 1 Mixed

N/A 725 images/sec 128

PyTorch
1.8.2

ResNext101 8 Mixed 10h
50min

78.01 3780 images/sec 128

PyTorch
1.8.2

BERT-Large Fine
Tuning (SQUAD)

1 Mixed 1h
11min

93.3 46 sentences/sec 24

PyTorch
1.8.2

BERT-Large Fine
Tuning (SQUAD)

8 Mixed 30min 92.8 330 sentences/sec 24

PyTorch
1.8.2

BERT-Large Pre
Training

1 Mixed

Phase 1 – 155
sentences/sec
Phase 2 – 31
sentences/sec

64

PyTorch
1.8.2

BERT-Large Pre
Training

8 Mixed

Phase 1 – 1230
sentences/sec
Phase 2 – 245
sentences/sec

64

PyTorch
1.8.2

DLRM 1 Mixed

47086 queries/sec 512

*System Configuration: HPU: Habana Gaudi® HL-205 Mezzanine cards, System: HLS-1 with eight HL-205 HPU and
two Intel® Xeon® Platinum 8280 CPU @ 2.70GHz, and 756GB of System Memory, Software: Ubuntu20.04, SynapseAI
Software version 1.0.1-81. Models run with Tensorflow v2.5.1 use this Docker image, and ones with v2.6.0 use this
Docker image. Models run with PyTorch v1.8.2 use this Docker image. Environment: These workloads are run using
the Docker images running directly on the Host OS.

Performance varies by use, configuration and other factors. All information provided here is subject to change
without notice. Habana Labs may make changes to its test conditions and internal reliability goals at any
time. Contact your Habana Labs representative to obtain the latest Habana Labs product specifications and
roadmaps. Your costs and results may vary.

https://vault.habana.ai/ui/repos/tree/General/gaudi-docker/1.0.1/ubuntu20.04/habanalabs/tensorflow-installer-tf-cpu-2.5.1
https://vault.habana.ai/ui/repos/tree/General/gaudi-docker/1.0.1/ubuntu20.04/habanalabs/tensorflow-installer-tf-cpu-2.6.0
https://vault.habana.ai/ui/repos/tree/General/gaudi-docker/1.0.1/ubuntu20.04/habanalabs/pytorch-installer

 9

We plan to expand our model coverage continuously and provide a wide variety of examples for users. In
the process, we expect to broaden framework operator coverage. Our TPC kernel library is continually
evolving and growing. Our roadmap repository will include updates on new models that we plan to
support.

5. Migration to Gaudi
Switching from a familiar DL platform and workflow to a new one takes effort. Our goal is to minimize
this effort and lower the barriers wherever possible. We expect most users will be able to take existing
models with minor changes to existing scripts and run on Gaudi. Habana GitHub will contain migration
guides and examples to assist users with porting their current models to run on Gaudi. In this section,
the focus is on TensorFlow. A similar approach applies to PyTorch as well. More information on
migrating models to Gaudi is available in the Migration Guide on docs.habana.ai.

The assumption is that the user is familiar with TensorFlow. The SynapseAI TensorFlow user guide will
provide an overview of SynapseAI integration with TensorFlow, APIs and operators that are supported,
and so on. The migration guide helps users develop a better understanding of how to port their current
TensorFlow models to Gaudi and provide practical tips to assist in their effort. In this section, we show
the minimum set of changes required to run a TensorFlow Keras model that does not contain any custom
kernels.

The minimal changes to enable training on the Habana Gaudi device are highlighted in bold:

• On line 2, we import ‘load_habana_module’ needed to enable Gaudi
• On line 2, we now call the ‘load_habana_module()’ function to enable Gaudi.

Once loaded, the HPU device is registered in TensorFlow and prioritized over CPU. When an operator is
available for both CPU and HPU, the operator is assigned to the HPU. When it is not supported on HPU,
it runs on the CPU

import tensorflow as tf

from TensorFlow.common.library_loader import load_habana_module

load_habana_module()

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([

 tf.keras.layers.Flatten(input_shape=(28, 28)),

 tf.keras.layers.Dense(10),

])

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5, batch_size=128)

model.evaluate(x_test, y_test)

https://github.com/HabanaAI/synapseai-roadmap/projects/1

 10

The example code for training on multiple Gaudi devices in a single server as well as multi-node training
(scale-out) on the Habana GitHub.

To enable developers get familiar with TPC programming for custom kernels, we have published the TPC
programming user guide, training videos and sample code. Check out the Habana Developer site for
additional details.

6. Getting Started with AWS DL1 Training Instances
Gaudi®-based Amazon EC2 DL1 Training Instances feature 8 Gaudi accelerators, AWS custom Intel Xeon
Cascade Lake processors, 400 Gbps networking and 4TB of NVMe storage. These instances are available
as standard EC2 instances with an easy to use, pay-as-you-go usage model and deliver up to 40% better
price performance than GPU-based instances.**

Instance Gaudi vCPU Memory Networking
DL1.24xlarge 8 96 768 400Gbps

Developers will be able to benefit from full stack of Amazon EC2 services on the DL1 instances:

• AWS Deep Learning AMIs for Gaudi, on Ubuntu18.04 and Amazon Linux 2
• AWS Deep Learning Containers (DLC) for TensorFlow and PyTorch
• AWS ECS and EKS orchestration for containerized applications
• Efficient scaling across multiple Gaudi-based EC2 Instances

Integration with Amazon SageMaker is coming soon for users looking for a managed service for building
and training machine learning applications.

Users can start with the pre-built AWS Deep Learning AMI (DLAMI) or AWS Deep Learning Containers
(DLC) when launching a DL1 instance from EC2. In future, we will also publish Habana Gaudi Base AMIs
on the AWS marketplace. Once the instance is launched, users can immediately get started with
training their models on Gaudi. To migrate existing models or use one of Habana reference models or
develop a model from scratch, users can refer to the content available on our Developer site. For
questions, help requests and support on issues, users are invited to post on the Habana Forum or file
issue tickets on the Habana GitHub repositories.

Please refer to the links below for information on getting started with a DL1 Training instances on EC2:

• Get started with Amazon EC2 DL1 Training Instances
• Amazon Elastic Container Service (Amazon ECS)
• Amazon Elastic Kubernetes Service (Amazon EKS)
• DLAMI release notes
• DLC Release notes

** Legal disclaimer: The price performance claim is made by AWS and based on AWS internal testing. Habana Labs
does not control or audit third-party data; your price performance may vary.

https://github.com/HabanaAI/Model-References/tree/master/TensorFlow/examples
https://aws.amazon.com/ec2/instance-types/dl1/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html

 11

7. Appendix
Enterprises training on a cloud instance sometimes need to also perform training on-premises. Habana
Gaudi based servers can be sourced from OEM partners such as Supermicro.

Figure 5 shows an integrated server configuration with dual socket CPU and eight Gaudi OCP Accelerator
Module (OAM) Mezzanine cards. The Gaudi OAM cards are connected all-to-all on the PCB, using seven
100GbE ports of each Gaudi. The all-to-all connectivity allows training across all eight Gaudi processors
without requiring an external Ethernet switch. The remaining three ports from each Gaudi are available
to scale out the solution over Ethernet ports. The host CPU manages the Gaudi processors through the
PCIe ports.

Figure 5. Integrated Server with Gaudi processors, host CPUs and Ethernet Interfaces

Supermicro X12 Gaudi AI Server

The Supermicro X12 Gaudi AI server (SYS-420GH-TNGR), powered by Habana Gaudi AI Processors, pushes
the boundaries of deep learning training and can scale up to hundreds of Gaudi processors in one AI
cluster. It features eight Gaudi HL-205 mezzanine cards, dual 3rd Gen Intel® Xeon® Scalable processors,
two PCIe Gen 4 switches, four hot swappable NVMe/SATA hybrid hard drives, fully redundant power
supplies, and 24 x 100GbE RDMA (6 QSFP-DDs) for unprecedented scale-out system bandwidth. This
system contains up to 8TB of DDR4-3200MHz memory, unlocking the Gaudi AI processors' full potential.
The HL-205 is OCP-OAM (Open Compute Project Accelerator Module) specification compliant. Each card
incorporates a Gaudi HL-2000 processor with 32GB HBM2 memory and ten natively integrated ports of
100GbE RoCE v2 RDMA.

https://www.supermicro.com/en/products/system/AI/4U/SYS-420GH-TNGR

 12

Figure 6. The Supermicro X12 Gaudi AI server

Gaudi HLS-1 Server

HLS-1 is a server designed by Habana Labs, containing eight HL-205 OCP Accelerator Module (OAM)
Mezzanine cards and dual PCIe switches. It is a Gaudi-only server, which requires an external host server.

Gaudi HLS1-H Server

HLS-1H is another server designed by Habana Labs, containing four HL-205 OCP Accelerator Module
(OAM) Mezzanine cards. The interfaces are 2x16 PCIe Gen4 cables that can be connected to an external
host server, and up to 40X100Gb Ethernet links. It is built to enable massive scale-out using off-the-shelf
external standard Ethernet switches.

Rack and POD Scale Systems

Customers can easily build training systems at scale using Ethernet switches and a variable number of
server nodes. The nodes can be servers composed of integrated CPU, Gaudi and Ethernet interfaces, or
combination of Gaudi servers and CPU host servers.

Figure 7 shows a rack-scale configuration with four Gaudi servers (eight Gaudi processors per server)
connected to a single Ethernet switch at the top of the rack. This switch can be further connected to other
racks in order to form a much larger training pod that can hold hundreds or thousands of Gaudi
processors. Each Gaudi server is connected to a CPU host server.

 13

Figure 7: Gaudi Rack-scale Server Configuration Example

	1. Introduction
	2. Gaudi Architecture
	3. SynapseAI® Software Suite
	3.1. Graph Compiler and Runtime
	3.2. Habana Communication Libraries
	3.3. TPC Programming
	3.4. DL Framework Integration
	3.5. Embedded Software and Tools

	4. Habana Developer Platform
	4.1. Vault and SynapseAI Container Registry
	4.2. Habana GitHub

	5. Migration to Gaudi
	6. Getting Started with AWS DL1 Training Instances
	7. Appendix

