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1. Introduction 
 

Machine Learning (ML), a subfield of Artificial Intelligence (AI), is no longer science-fiction. One prominent field 
within ML is Deep Learning, in which the models are Deep Neural Networks (DNNs). Many problems in multiple 
domains (e.g., object detection and classification in images/videos, speech recognition and more), which 
several years ago were considered difficult for machines to solve, are now solved as accurately as by human 
beings and more, using deep learning models. As such, deep learning is a transformational technology. 

A typical deep learning algorithm comprises of multiple operators, such as matrix multiplication, convolutions 
and other tensor operators, which add up to billions of compute-intensive operations. The execution of this 
massive amount of operations can be accelerated by using the inherent parallel processing that advanced GPUs 
offer. However, GPUs, which are primarily designed to render graphics in a super-fast way, are not optimized 
for deep learning workloads. The existing solution’s inefficiency for deep learning workloads has a severe 
impact on the operational costs of cloud providers and data centers. To address this issue, a new class of 
software programmable AI processors are emerging, designed from the bottom-up for DNN workloads – Pure 
AI™ Processors. 

Habana’s Goya is a product line of AI processors dedicated to inference workloads. The HL-1000 processor is 
the first commercially available, deep learning inference processor, designed specifically to deliver superior 
performance, power efficiency and cost savings for cloud, data centers and other emerging applications. 

 
For Information about the HL-100/102 line-cards, incorporating the HL-1000 processor, please see 
www.habana.ai 
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2. Deep Learning Workflows – Training and Inference 
 

A deep learning workflow consists of two conceptual steps: 
• Training - adjusts neural network model parameters to perform well on given data 
• Inference - executes a trained neural network model on new data to obtain the output 
 
For a model to address a specific use case, one first needs to train the model. Once the model is trained, it can 
be used (for inference). Both training and inference have similar characteristics, but different hardware 
resource requirements. 
 
During training, a large dataset is processed to train a neural network model so that the model will  distinguish 
between different statistical properties of the samples within the dataset. An example: recognizing images of 
apples from an arbitrary set of input images. After the model is ready for use, i.e., the model meets the accuracy 
goals set for successfully recognizing which images contain an apple and which do not, the model is ready for 
deployment. In a production environment, the model is used to efficiently recognize a new set of images to 
which it was not exposed during training. This operation is called inference and the goal of this phase is to infer 
attributes in the new data using the trained model (in our case, whether an apple appears in the image). 

Training workloads require high-bandwidth memories with large capacity, in addition to the memory 
requirements for chip-to-chip communication. These requirements greatly increase solution BOM and its power 
consumption. 

Inference is critical to support real-time applications such as neural machine translation, virtual assistant and 
many others. Therefore, inference is required to complete with low latency. In addition, providing high 
throughput with low batch sizes is also critical for inference of many applications. To provide comprehensive 
inference capabilities, an inference solution should provide high throughput, low latency, low power and be cost 
effective. Enter Goya! 

 

Figure 1 - Deep Learning Workflows – Training and Inference 
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3. GOYA™ Deep Learning Inference Platform 
The Goya platform architecture has been designed from the ground up for deep learning inference workloads. 
It comprises a fully programmable Tensor Processing Core (TPC™) along with its associated development 
tools, libraries and compiler. The TPC™ with its accompanying software collectively deliver a comprehensive, 
flexible platform that greatly simplifies the development and deployment of deep learning systems for mass 
markets and cloud computing. The platform is capable of massive data crunching with low latency and high 
accuracy, as required by the workloads. 

All major deep learning frameworks are supported, including TensorFlow, MXNet, Caffe2, Microsoft 
Cognitive Toolkit, PyTorch and Open Neural Network Exchange Format (ONNX). Habana also supports the 
Glow Machine Learning Compiler (HL-100 was the first AI Processor to be integrated as backend for the Glow 
ML compiler) and the Habana-Glow integration was open-sourced in Q1 2019. Starting with Linux 5.1 (released 
in May 2019) Habana HL-100 drivers are included in the official Linux distribution. The kernel mode drivers 
were upstreamed on Q4 2018. 

Habana Lab’s software stack seamlessly interfaces with all deep learning frameworks. A trained DNN model is 
first converted into an internal representation. Following this step, ahead-of-time (AOT) compilation is used to 
optimize the model and create a working plan for the network model execution on the Goya hardware. 

 

 

Figure 2 - GOYATM Inference Platform – Software Stack 
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3.1. SynapseAI® -  Optimizer and Runtime 
 

Habana Lab’s SynapseAI® is a comprehensive inference software toolkit that simplifies the development and 
deployment of deep learning models for mass-market use. The SynapseAI® software provides inference 
network model compilation (Graph Complier) and runtime. 

The Goya™ platform is training platform-agnostic. A DNN can be trained on any hardware platform (GPU, 
TPU, CPU or any other platform) to obtain a model. SynapseAI® imports the trained model and compiles it for 
use on the Goya™ platform. The result is an optimized execution code in terms of accuracy, latency, throughput 
and efficiency. 

SynapseAI® supports automatic quantization of models trained in floating-point format with near-zero 
accuracy loss. It receives a model description and representative inputs, and automatically quantizes the 
model to fixed-point data types, thus greatly reducing execution time and increasing power efficiency. 

The user can specify the required level of performance gain and whether some accuracy may be sacrificed to 
improve performance. 

SynapseAI® provides two APIs: 

• C API for describing a neural network to be executed on the platform. 
• Python API that can load an existing native framework (TensorFlow, MXNet, etc.) or via ONNX (that can be 
imported from other frameworks). 

The SynapseAI Run Time is the user mode driver. It is a layer between the user’s code to Goya’s PCIe driver that 
is used when inference is executed. 

 

3.1.1. Example SynapseAI® Workloads 
 

Given TPC’s programmability, Goya™ is a very flexible platform. It enables quick adoption of different  deep 
learning models and is not limited to supporting specific workloads or workloads from a specific domain. Goya™ 
supports models from various domains, including, but not limited to, vision (for example, object detection, 
classification, segmentation), NLP (for example, Neural Machine Translation, text classification) and speech 
(recognition, synthesis) and Recommender systems. 
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4. GOYA™ Processor High- level Architecture 
 
Goya™ is based on the scalable architecture of the TPC™, which uses a cluster of eight TPC™ cores. The TPC™ 
was designed to support deep learning workloads. It is a VLIW SIMD vector processor with ISA and hardware 
that was tailored to serve deep learning workloads efficiently. 
 
The TPC™ is C-programmable, providing the user with maximum flexibility to innovate, coupled with many 
workload-oriented features such as: 
• GEMM operation acceleration 
• Special functions dedicated hardware 
• Tensor addressing 
• Latency hiding capabilities 

The TPC™ natively supports the following mixed-precision data types: 
• FP32 
• INT32 
• INT16 
• INT8 
• UINT32 
• UINT16 
• UINT8 

To achieve maximum hardware efficiency, the SynapseAI™ quantizer selects the appropriate data type by 
balancing throughput and performance versus accuracy. 

For predictability and low latency, Goya™ is based on software-managed, on-die memory along with 
programmable centralized DMAs. For robustness, all memories are ECC-protected. 

 

Figure 3 - GOYATM High-level Architecture 
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4.1. Software Development Tools 

 
SynapseAI™ enables users to unleash the power of deep learning by executing the algorithms efficiently using 
its high-level software abstraction. However, advanced users can perform further optimizations and add their 
own proprietary code using the provided software development tools. The Goya™ platform comes with state-
of-the-art development tools, including visual real-time performance profiling and TPC™ development tools for 
advanced users (including an LLVM-C compiler) to combine third-party TPC™ kernels. Thus, users can quickly 
and easily deploy a variety of network models and algorithms. 

 

 

 

Figure 4 - GOYATM Platform Software Developments Tools 
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5. GOYA™ Inference Performance 

 
The key factors used in assessing the performance of the Goya™ inference platform compared to other 
solutions are throughput (speed), power efficiency, latency and the ability to support small batch sizes.  The 
Goya HL-100 PCIE card provides throughput of 15,453 images/second for a ResNet-50 workload at a latency 
of ~1 msec, well below the industry requirement of 7 msec, Moreover, Goya's performance is sustainable at a 
small batch size, making it effective in various scenarios. 
Below are performance results for various topologies from Tensorflow, ONNX public repositories and in-house 
topologies based on public sources. 

Software: Ubuntu v-16.04.4 , SynapseAI v-0.2.0-1173 
Hardware: Goya HL-100 PCIE card, Host: Xeon Gold 6152@2.10Ghz 
2019 Habana Labs Ltd. | www.habana.ai | Aug 2019 9 
  

Topology 
 Frame 
Work 

Perf Metric 
Batch 
Size 

Throughput 
Latency 
(msec) 

Model Source 

BERT SQuAD 
Base, Intermediate Size=3,072; Max 
Seq Len = 128 

MXnet Sentences/Sec 

8 1108 7.2 https://gluon-
nlp.mxnet.io/model_zoo/bert/index.html 

12 1273 9.4 

24 1527 15.7 

Resnet18 v1 ONNX Images/Sec 

1 13156 0.1 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet18v1/resnet18v1.onnx  

4 26384 0.3 

8 29961 0.5 

10 30726 0.6 

Resnet34 v1 ONNX Images/Sec 

1 8345 0.2 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet34v1/resnet34v1.onnx  

4 15050 0.5 

8 17254 0.8 

10 18016 0.9 

Resnet50 v1 ONNX Images/Sec 

1 7466 0.2 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet50v1/resnet50v1.onnx  

4 13221 0.5 

8 14546 0.9 

10 15453 1.0 

Resnet101 v1 ONNX Images/Sec 

1 4533 0.4 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet101v1/resnet101v1.onnx 

4 8062 0.9 

8 9086 1.3 

10 9705 1.5 

Resnet152 v1 ONNX Images/Sec 

1 2912 0.6 https://s3.amazonaws.com/onnx-model-
zoo/resnet/resnet152v1/resnet152v1.onnx 

4 5138 1.2 

8 5737 1.9 

10 6075 2.2 

 

 

 

https://gluon-nlp.mxnet.io/model_zoo/bert/index.html
https://gluon-nlp.mxnet.io/model_zoo/bert/index.html
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet18v1/resnet18v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet18v1/resnet18v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet34v1/resnet34v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet34v1/resnet34v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v1/resnet50v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v1/resnet50v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet101v1/resnet101v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet101v1/resnet101v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet152v1/resnet152v1.onnx
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet152v1/resnet152v1.onnx
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Topology 
 Frame 
Work 

Perf Metric 
Batch 
Size 

Throughput 
Latency 
(msec) 

Model Source 

Inception v1 TF Images/Sec 

1 11296 0.2 http://download.tensorflow.org/models/inception_
v1_2016_08_28.tar.gz 

4 15116 0.5 

8 15881 0.9 

10 16011 1.0 

Inception v3 TF Images/Sec 

1 2587 0.6 https://storage.googleapis.com/download.tensorflo
w.org/models/inception_v3_2016_08_28_frozen.pb
.tar.gz 

4 4217 1.3 

8 4389 2.3 

10 4412 2.8 

SSD300 vgg16 Mxnet Images/Sec 1 1447 1.1 

VGG16 VGG backbone: 
http://github.com/zhreshold/mxnet-
ssd/blob/master/symbol/legacy_vgg16_ssd_300.py   

Googlenet BN no lrn ONNX Images/Sec 

1 12573 0.1 Developed inhouse based on Googlenet with batch 
norm and w/o LRN (pls refer to section 5.1 below) 

4 16962 0.5 

8 18243 0.8 

Yolo v2 1088x1920 pytorch  Images/Sec 1 166 6.6 https://github.com/marvis/pytorch-yolo2 

Yolo v2  960x960 pytorch  Images/Sec 1 290 4.0 https://github.com/marvis/pytorch-yolo2 

Tiny Yolo v2 960x960 pytorch  Images/Sec 1 1772 1.1 https://github.com/marvis/pytorch-yolo2 

Yolo v3 960x960 pytorch  Images/Sec 4 361 12.0 
https://github.com/eriklindernoren/PyTorch-
YOLOv3 

 

 Table 1: GOYATM
 Inference Performance Benchmarks 

 

5.1 Googlenet 
 

The Googlenet topology was developed in 2014, opting to use Local Response Normalization (LRN) over Batch 
Normalization. LRN is more computationally expensive. We have improved the throughput when replacing LRN 
with BN, which also results in improved accuracy, 72% top1 versus 68% originally. As this replacement reduces 
the amount of computation while improving accuracy, we expect it to perform better on any inference 
processor. Therefore, we are offering this improved topology (Googlenet_bn_no_lrn) on demand. Other than 
replacing LRN with BN, the topology has exactly the same structure. 
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5.2 BERT 
 
One of challenges implementing natural language processing (NLP) applications is the cost of training 
resources. Many NLP (natural language processing) use cases require large amounts of data in ordered to be 
trained. In order to reuse and save training compute, time and costs, researchers have developed a pre-training 
method, training general purpose language representation models, based on enormous amount of unannotated 
text. This pre-trained model can then be fine-tuned using small amounts of data and with an additional, lean, 
output layer create state-of-the-art models for a wide range of tasks like question answering, text summation, 
text classification (e.g. spam or not) and sentiment analysis, resulting also in substantial accuracy 
improvement, compared to training on these datasets from scratch. 

 

Figure 5 - BERT Two Phases: Pre-Trained Model and Specific Task Fine-Tuning 

The approach pioneered by BERT constitutes a paradigm shift in language modelling using deep learning 
models, by offering a strong representation that can be used in transfer-learning new tasks. New models and 
techniques based on the BERT architecture have quickly taken their place as the de-facto standard in text 
understanding. BERT makes use of Transformer, an attention mechanism that learns contextual relations 
between words (or sub-words) in a text. It consists of multiple, multi-head self-attention layers, that leverage a 
bidirectional context conditioning on the input text, allowing the model to learn the context of a word based on 
all its surroundings (beginning and end of each sentence). Ltd. |ai | Aug 2019 11 
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5.2.1. BERT Inference Using GOYA™ 

 
The GOYA inference architecture delivers exceptional inference performance for the BERT workloads. All of 
BERT operators are natively supported by the Goya HL-1000 Inference processor and can be executed on Goya 
without any host intervention. A mixed precision implementation is deployed, using Habana’s quantization tools 
which set the required precision per operator to maximize performance while maintaining accuracy.  
BERT is amenable to quantization, with either zero or negligible accuracy loss, while GEMM operations are 
execute at INT16, Some other operations, like Layer Normalization, are done in FP32. 
 
Goya’s heterogenous architecture is an ideal match to the BERT workload, as both the GEMM 
engine and the Tensor Processing Cores (TPCs) are fully utilized, supporting low batch sizes at high throughput. 
Goya’s TPC provides significant speedup when calculating BERT's nonlinear functions resulting in leading 
benchmark results. In addition, the Goya’s software-managed SRAM allows increased efficiency between 
different memory hierarchies, while executing. 
Below are performance results measured on Goya, for a question answering task, identifying the answer to the 
input question within the paragraph, based on Stanford Question Answering Database (SQuAD). 
The tested topology is BERTBase encoder, Layers=12 Hidden Size=768 Heads=12 Intermediate Size=3,072 
Max Seq Len = 128.  

To quantify and benchmark this task, we used Nvidia’s demo release and model: 
https://github.com/NVIDIA/TensorRT/commits/release/5.1 commit: 
7a0772f06997e3bdd1e68e55a52f9851e17aadc8 

Model used: https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_base_fp32_128/versions/1/zip 

Below are the platform configurations and results. 
 
Please note that both Goya and T4 implementation using mixed precision of 16 bit and FP32 data types. Goya's 
mixed precision quantization resulted in a comparable accuracy to the original model trained in FP32, such that 
the error is at most 0.11% (Verified on SQuAD 1.1 and MRPC tasks). 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_base_fp32_128/versions/1/zip
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Figure 6 - BERT- Base SQuAD Inference Benchmark 

  
Goya Configuration: 

Hardware: Goya HL-100; CPU Xeon Gold 6152@2.10Ghz 
Software: Ubuntu v-16.04.4; SynapseAI v-0.2.0-1173 
 
GPU Configuration: 

Hardware: T4; CPU Xeon Gold 6154 CPU @ 3Ghz/16GB/4 VMs 
Software: Ubuntu-18.04.2.x86_64-gnu; CUDA Ver 10.1, cudnn7.5; TensorRT-5.1.5.0 
 
The Goya processor delivers 1.67x to 2.06x (batch 12/24 respectively) higher throughput than the T4 on the 
SQuAD task, all at significant lower latency. As the BERT base model is foundational to many NLP applications, 
we expect similar inference speedups for other NLP applications based on it with their own fined tune layers. 
Moreover, the Goya architecture is scalable and keep its high efficiency while increasing the batch size. 
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6. Summary 
 

Deep learning revolutionizes computing, impacting enterprises and the services and experiences they can 
deliver across multiple industrial and consumer sectors. Deep neural networks are becoming exponentially 
larger and more complex, driving massive computing demands and costs. Modern neural networks are too 
compute-intensive for traditional CPUs, and even GPUs. The future belongs to dedicated high throughput, low 
latency, low power AI processors.  

Inference performance is measured by throughput, power efficiency, latency and accuracy, all of which are 
critical to delivering both data center efficiency and great user experiences. The Goya HL-1000 is a world class, 
high performance, AI processor for inference workloads. It is supported by state-of-art software development 
tools and a full software stack. 

An effective deep learning platform must have the following characteristics: 

• A processor that is custom-built for deep learning (e.g., Goya HL-1000). 
• That's software-programmable (e.g., SynapseAI™) 
 

Habana Labs' Goya™ AI Inference Platform meets all these requirements. 
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